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We have studied the spin structure of circular four-electron quantum rings using tunable confinement po-
tentials. The calculations were done using the exact diagonalization method. Our results indicate that ringlike
systems can have oscillatory flips between ferromagnetic and antiferromagnetic behavior as a function of the
magnetic field. Furthermore, at constant external magnetic fields there were seen similar oscillatory changes
between ferromagnetism and antiferromagnetism when the system parameters were changed. According to our
results, the magnetism of quantum rings could be tuned by system parameters.
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I. INTRODUCTION

During the last two decades, there has been seen an in-
creasing scientific and technological interest in spin related
phenomena and in possible application of these in future data
processing, communication and storage.1,2 Quantum dots
have been proposed as components in few-electron spintron-
ics devices, such as spin filters or spin memories,2,3 and in
spin-based quantum computation devices.4

Existing fabrication techniques allow construction of
semiconductor quantum rings of nanometer dimensions con-
taining only a few electrons.5–7 Nanoscopic quantum rings
are sufficiently small systems to show quantum effects, and
large enough to be able to trap magnetic flux in their interior,
when subjected to an experimentally reachable magnetic
field. The trapping of magnetic flux quanta gives rise to in-
teresting effects, such as persistent currents and other peri-
odic properties related to the Aharonov-Bohm effect.5,8

The main focus of this paper is on the magnetic properties
of the quantum rings. The previous study by Koskinen et al.9

for one type of quantum rings has shown that a model of
localized charges and antiferromagnetic coupling of the
nearest-neighbor spins, corresponding to an antiferromag-
netic Heisenberg model, captures the physics of systems they
study. This means, for example, that when the angular mo-
mentum of the system is increased by making the magnetic
field stronger, the change of the total spin of the system
follows values found using the antiferromagnetic Heisenberg
model. On the other hand, a study of a hard-wall quantum
dot10 where strong electron-electron interaction forces the
electron density to be ring-shaped, has found a ferromagnetic
behavior of the system as a function of the magnetic field.
Motivated by this discrepancy, we study tunable quantum
rings and aim to identify the underlying physics that leads to
different magnetic properties for the various quantum rings.

Our results show interestingly that the same quantum ring
system can show oscillation between ferromagnetic and an-
tiferromagnetic behavior as a function of the magnetic field.
A similar control of the magnetism can be obtained by
changing the width or the radius of the quantum ring.

II. MODEL AND COMPUTATIONAL METHOD

We use an effective-mass approximation and model the
semiconductor quantum rings as two-dimensional systems
with the Hamiltonian

H = �
i=1

N � �− i��i + eAi�2

2m�
+ V�ri�� +

e2

4��
�
i�j

N
C

rij
, �1�

where N is the number of electrons, A is the vector potential
of the perpendicular magnetic field B=Buz, V is the external
confinement potential, m� is the effective electron mass, C is
the Coulomb constant �normally 1�, and � is the dielectric
constant. The electrons are restricted to the Cartesian xy
plane, and the magnetic field is normal to the plane. In our
calculations, we use the effective parameter values of GaAs,
namely, m�=0.067me and �=12.7. To enhance the spin ef-
fects, we have left out the Zeeman potential. This can be
justified since experimentally the gyromagnetic factor, and
thereby also the Zeeman term, can be made vanishingly
small.11

To control the spin effects, we use confinement potentials
of the form

V�r� =
1

2
m��0

2r2 + V0 exp�− r2/�2� , �2�

where �0 determines the confinement strength and V0 deter-
mines the strength of the Gaussian perturbation. We set
��0=5 meV and �=2 aB

� , where aB
� �10.03 nm is the ef-

fective Bohr radius of GaAs. By tuning the Gaussian pertur-
bation stronger, we can make the system more and more
ring-shaped. In addition, we have used a parabolic ring po-
tential given by

V�r� =
1

2
m��0

2�r − r0�2 �3�

to model a narrow quantum ring.
In the exact diagonalization �ED� calculations, our single-

particle states are the one-body eigenstates of the Hamil-
tonian H. In cases when the confinement potential V is para-
bolic, the single-particle eigenstates are the Fock-Darwin
states.12 For systems with perturbed parabolic or parabolic
ring potentials, we calculate the single-electron states as lin-
ear combinations of Fock-Darwin states, all with the same
angular momentum, corresponding to the 15 lowest energy
values. The ED calculations take into account Landau-level
mixing, as the 25 lowest-lying eigenstates, irrespective of
Landau level, are included in the computational procedure.
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The ground state eigenvalues of the Hamiltonian matrix of
the ED method were obtained using the Lanczos diagonal-
ization method, and the interaction matrix elements were cal-
culated using numerical integration. The principles of the ED
method are described in Ref. 13.

When the electrons in a quantum ring become sufficiently
localized, charge and spin excitations separate from each
other.14 This phenomenon is a nonperturbative effect due to
the strong correlations in quantum ring systems at high mag-
netic fields. The qualitative behavior of the many-particle
spectrum of a quasi-one-dimensional system has been de-
scribed by the lattice Hamiltonian,9,15,16

H = J�
i,j

Si · S j +
1

2I
L2 + �

�

���n�, �4�

where the first term is a Heisenberg Hamiltonian that models
the spin degrees of freedom, the second term is a rigid rota-
tion of the system, and the last term includes vibrational
modes of the localized electrons. The parameters of the
model are the nearest-neighbor coupling constant between
the spins J, the total moment of inertia I, and the vibration
frequency ��. The angular momentum of the ring is given by
L and n� is the number of excitation quanta of the vibrational
mode. In an antiferromagnetic system the coupling is such
that J	0, and in a ferromagnetic system J�0.

The total angular momentum-spin pairs of the lowest
eigenstates for the effective Hamiltonian �4� can be calcu-
lated using exact diagonalization, or using group-theoretical
methods.9 In Table I, we have given the angular momentum
and spin states of the ferromagnetic and antiferromagnetic
systems of four particles, as calculated by the exact diago-
nalization. The spin sequence is N periodic as a function of
the angular momentum, where N is the number of electrons.
One can see that for four particles, the antiferromagnetic
behavior is manifested by the three consecutive ground states
with spin equal to one, and one signature of the ferromag-
netic model is the occurrence of ground state with spin equal
to two. One should also note that there is one ground state
with total spin equal to zero for both versions of the Heisen-
berg model.

III. RESULTS

A. Gaussian perturbation ring

We start with the results for the parabolic dot that has
been perturbed with the Gaussian potential in the center to
form a quantum ring. In Fig. 1, we have plotted spin ground

states as a function of the magnetic field B for four-electron
perturbed parabolic dots with perturbation strengths V0=0, 1,
2, and 3 Ha��1 Ha��11.3036 meV�. For all these pertur-
bation strengths, the radius of the quantum ring is around
2 aB

� . For V0=0, corresponding to a pure parabolic quantum
dot, the states with L=6 and 18 are the only fully spin-
polarized states �dark gray regions in phase diagram�, as also
found in Ref. 14 in the lowest Landau-level approximation.
The state with L=6 is called the maximum-density droplet
�MDD�,17 corresponding to the fractional quantum Hall
states with filling fraction 
=1, and the state with L=18
corresponds to 
=1 /3.18 Between these two states the total
spin has values of zero and one, but these do not follow the
predictions from the antiferromagnetic Heisenberg model,
most clearly seen from the fact that there are no regions with
three consecutive ground states with spin equal to one. This
is not surprising, as we expect the Heisenberg model to be
relevant only in the limit where electrons are strongly in a
ring-shaped confinement.

Next we turn on the Gaussian perturbation, and one can
see that the spin-polarized state with L=6 at V0=0 splits into
several spin-polarized states with different angular momen-
tum. In addition, between these S=2 states, the total spins
follow the ferromagnetic Heisenberg spins given in Table I.
The only exception on this rule is found at V0=2 around B
=11 T, where S=1 is found instead 0.

Outside these ferromagnetic regions at stronger magnetic
fields, one can see antiferromagnetic behavior. The antiferro-
magnetic phase can be identified by the three S=1 states in a
row, separated by the S=0 state. In addition, antiferromag-
netic behavior could develop at weak magnetic fields, as at
V0=3 there are already three consecutive states with S=1. As
will be shown later in this paper, when the ring is sufficiently
narrow there is indeed found an antiferromagnetic region at
magnetic fields lower than the first ferromagnetic region.

In a previous study10 of a hard-wall quantum dot with a
radius R=5 aB

� and maximum of the electron density around

TABLE I. Total angular momenta L and their corresponding
spin values S for the ferromagnetic and antiferromagnetic ground
states of the Heisenberg model of a four-electron ring. Spin states
corresponding to higher angular momenta are obtained by utilizing
the periodicity of the spin sequence.

L 0 1 2 3

S Ferromagnetic 0 1 2 1
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FIG. 1. �Color online� Ground-state spin polarization as a func-
tion of the magnetic field B for a four-electron parabolic quantum
dot with Gaussian perturbations of different strengths V0. The spin
states are 0 �red/middle gray�, 1 �green/light gray�, and 2 �dark
gray�. The upper integers denote the number of central vortices
found in each of the different states, and the integers surrounded by
a ring denote the corresponding angular momenta. All states at zero
magnetic field have angular momentum 0. If two subsequent states
are separated by a solid line, the angular momentum increases by
one when moving to the state at right, and if they are separated by
a dashed line, the angular momentum increases by two.
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3 aB
� , the spin structure was ferromagnetic for angular mo-

menta L between 6 and 18. Such a magnetic structure is
almost the same as that found for the perturbed parabolic
system with perturbations V0=1 and 2. The magnetic struc-
ture of the wide quantum ring is thus for angular momenta
6�L�18 similar to that of a hard-wall quantum dot.

B. Vortex structure

From the phase diagram shown in Fig. 1, one can also see
that the state with angular momentum L=6 changes spin
when the Gaussian impurity is made stronger. This change
and many other details of the phase diagram can be under-
stood by studying the vortex structure of the many-body
wave function.

When subjected to an external magnetic field, the elec-
trons in a quantum dot are forced to rotate. If the rotation is
sufficiently strong, vortices are formed in the electron
liquid.19 One can consider the vortices as quasiparticles that
are holes in the occupied Fermi sea.15 The vortices are seen
as zero points in the conditional electron density, where the
phase of the wave function changes as a multiple of 2� for a
path enclosing the node. As shown in the fractional quantum
Hall effect �FQHE� theory,20 the formation of vortices is a
result of quantization of the magnetic field, and each vortex
is associated with an integer number of Dirac flux quanta.

To analyze the nodal structure of the perturbed quantum
dot, we have calculated conditional wave functions,19 de-
fined for an N-particle system as

�c�r� =
�r,r2

�, . . . ,rN
� �

�r1
�,r2

�, . . . ,rN
� �

, �5�

where r is the position of the moved particle 1, and ri
� is the

most probable position of particle i that are found by maxi-
mizing the total electron density ��2. The phase � is ob-
tained from the relation �c�r�= ��c�r��exp�i��r�	 and the con-
ditional electron density is defined as ��c�r��2.

Now returning to the question related to the spin of the
L=6 state, a starting point for this analysis is the conditional
wave function of the parabolic dot shown in Fig. 2�j�. In this,
one can see a Pauli vortex on top of each electron, except the
probe particle on right. The vortices are shown by the dis-
continuous jumps in the grayscale from white to black when
the electrons are circulated in a clockwise fashion. The fact
that the vortex number is the same as the electron number
shows that the state is a finite-size example of a quantum
Hall state with filling fraction 
=1.

For V0=1, shown in Fig. 2�g�, the spin is still the same
and the conditional wave function is nearly identical to the
V0=0 state. However, for V0=2 the spin has changed from 2
to 0, and the conditional wave function in Fig. 2�d� looks
completely different. There is still one Pauli vortex on top of
the left-most electron, but the two other electrons have
switched spins. In addition, there is now one vortex that is
located at the center of the system. It turns out that one needs
to combine two Pauli vortices in order to make one vortex at
the center of the dot. From this data, one can understand the
change in the total spin as follows: the system places the
vortices so that it minimizes the total energy. Without the

Gaussian impurity at the center of the dot, it is energetically
favorable to place the vortices on top of the electrons to
reduce the Coulomb repulsion. When the potential at the
center of the dot is raised by the Gaussian impurity, at some
strength it is more favorable to reduce the probability of the
electrons to be at the center of the dot by placing a vortex
there.

One can do a similar analysis for the L=18 state, which
for V0=0 corresponds to the 
=1 /3 state. The correspon-
dence can be seen by the three vortices bound to each elec-
tron, as shown in Fig. 2�k�. The reason for the small separa-
tion of the vortices is due to long-range nature of the
interaction. For V0=1 shown in Fig. 2�h�, there are already
two vortices at the center of the dot, and to create these, four
Pauli vortices have vanished from the system. Due to this,
the spin has again changed, and the opposite spins have only
two vortices bound to them. As a general rule, opposite spin

FIG. 2. Conditional wave functions consisting of the charge
density, plotted with contour lines �logarithmic scale�, and the phase
of the wave function, illustrated by the grayscale shading. The fixed
spin up electrons are marked with black triangles pointing up, and
the spin down electrons with white triangles pointing down. The
probe particle is marked with a larger triangle. The clusters consist-
ing of central vortices �nodes�, which can be considered as giant
vortices, are denoted by circular arrows.
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electrons can have even vortices bound to them, and the
antisymmetry requirement of same spin electrons forces the
vortex number to be odd. The vortex structure of the S=0
states is similar to that of a 
=2 /3 Halperin state,21–23 apart
from the vortices at the center of the dot. Going to V0=2
shown in Fig. 2�e�, a third vortex has appeared at the center,
and now again the total spin of the system has changed.
Finally, at V0=3 shown in Fig. 2�b� the conditional wave
function is nearly identical to the V0=2 case.

The same trend can be found at even larger values of the
angular momentum, and as a final example, we show the
data for the L=30 states in Figs. 2�c�, 2�f�, and 2�i�. The
main difference to the previous examples is that when the
number of central vortices grows, also the area they occupy
seems to be larger.

Analyzing the vortex structure of the other states in detail
enables us to label the central vortex numbers of the ground
states. These numbers are given in Fig. 1 for the most inter-
esting states. One can see that in general, the number of
central vortices grows as a function of the magnetic field.
However, at each fixed Gaussian impurity strength, there is a
point where it is energetically favorable to add Pauli vortices
instead of the central vortices, and at this point the number of
central vortices is constant although the angular momentum
increases. At these points, the ferromagnetic behavior is
changed to antiferromagnetic. Somewhat similar transitions
are seen at the magnetic fields below the first ferromagnetic
states.

It is also interesting to analyze the ground states at mag-
netic fields around 6–7 T. At V0=0, the ground state is the
S=2 state with L=6 corresponding to 
=1. When the Gauss-
ian impurity is made stronger, there are more and more vor-
tices at the center of the system, and the angular momentum
is increased. However, the spin of the ground state does not
change. This shows that the 
=1 state is in some sense stable
even for this small particle number when one pierces it with
three fluxes at the center. By this we mean that the vortex
structure of the conditional wave function is the same apart
from the central vortices, see Figs. 1�b� and 1�j�.

C. Narrow quantum ring

Based on the analysis presented above, one would expect
to find an antiferromagnetic region at low magnetic fields, if
the ring is made sufficiently narrow �see the region with B
=2–4 T and V0=3 Ha� of Fig. 1�. To investigate this, we
switch the confinement potential to

V�r� =
1

2
m��0

2�r − r0�2, �6�

where the confinement strength is taken to be 40 meV and
the radius 8aB

� /��2.5aB
� . This system is a very narrow ring

with approximately the same radius as the ring studied
above.

In Fig. 3, the total angular momentum and spin of the
ground state is plotted for the narrow ring. We have varied
the Coulomb constant between the values C=0.1, 1, and 10.
In reality, the interaction strength can be changed by chang-
ing the quantum ring radius.13 The case with C=1, shown in

Fig. 3�b�, corresponds to the natural interaction strength, and
serves as basis for the comparison with the ring used above.
For this case, the total spin has values zero and one, and
above B=4 T there are three states with spin one between
each ground state with spin equal to zero, in agreement with
the antiferromagnetic Heisenberg model. Thus, as expected
there is an antiferromagnetic region at low magnetic fields
when the ring is sufficiently narrow.

When the Coulomb interaction is made weak by setting
C=0.1, two of the three consecutive S=1 states are no longer
ground states as shown in Fig. 3�a�. Now, although the spin
has values 0 and 1, the system does not behave as the anti-

(b)

(a)

(c)

FIG. 3. �Color online� Total angular momentum L and spin S of
the ground states given as functions of the magnetic field B for a
four-electron parabolic ring with 40 meV confinement strength and
radius 8aB

� /�, where aB
� is the effective Bohr radius. The Coulomb

constant is �a� C=0.1, �b� C=1, and �c� C=10. The crosses denote
states with magic angular momenta Lk=LMDD+kN, where k
� 
0,1 ,2 , . . .�, LMDD= �N−1�N /2 is the angular momentum of the
maximum-density droplet �MDD�, and N is the number of elec-
trons. The state with angular momentum LMDD is marked with a
cross surrounded by a circle.
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ferromagnetic model. This shows that the localization in-
duced by the strong interaction is a necessity for antiferro-
magnetism.

On the other hand, when we make the interaction stronger
by setting C=10, one can see that fully spin-polarized
ground states are found. In addition, the magnetic field range
of each ground state is nearly the same. In the magnetic field
region between 6 and 10 T, the ferromagnetism is not as pure
as the antiferromagnetism for the C=1 case, as now the
ground states with S=0 are missing. Also, the system is an-
tiferromagnetic up to B�6 T. We conclude that a transition
between antiferromagnetic and ferromagnetic behavior also
can be controlled by the Coulomb interaction strength, or
physically by tuning the radius of the quantum ring.

IV. CONCLUSION

Our results indicate that both ferro- and antiferromagnetic
phases are found for quantum rings in a strong magnetic
field. In addition, the occurrence of the different magnetic

phases is not trivial to predict, as the magnetic phase is de-
termined by the magnetic field region, the ring width and the
radius of the system. We found that the magnetic phase
changes oscillatory as a function of the different system pa-
rameters. Knowledge of the nontrivial magnetic phase struc-
ture could be very fruitful for experiments, as the observed
phenomena opens the possibility for tunability of the magne-
tism by changing system parameters. For example, in an ex-
periment, a metallic electrode with adjustable voltage could
be used to achieve the control we had in our calculations
when using the Gaussian impurity.
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